Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol Detection by Using BNNT: DFT Studies
Authors
Abstract:
Electrical sensitivity of a Boron Nitride Nano Tube (BNNT) was examined toward hydroquinone (C6H4(OH)2), cyanogens (C2N2), methylacetylene (C3H4), ethylacetylene (C4H6), aniline (C6H5NH2), ethanol (C2H5OH), pyrrole (C4H5N), molecules by using Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level of theory. In considering the dsorption energy (Ead) of those molecules on the BNNT are sequenced: C6H5NH2(Ead= -47.55kcal/mol)> C4H5N (Ead=-26.66kcal/mol) >C2H5OH(Ead= -25.91kcal/mol)> (CN)2(Ead=-20.70kcal/mol)> C6H4(OH)2(Ead= -20.21kcal/mol) >C3H4(Ead=-12.73kcal/mol)> C4H6(Ead=-11.19kcal/mol). According to this comparison aniline molecule with Ead=-47.55 kcal/mol has the most adsorption energy among all molecules. Calculations showed that when the nanotube was doped by Si and Al atoms, the amount of HOMO/LUMO energy gap (Eg) reduced significantly. This reduced showed that BNNT is a suitable semiconductor after doping and the doped BNNT in the presence of those gases generates an electrical signal and therefore can be used potentially for gas sensors. Recent researches demonstrate that Boron nitride nanotube is a suitable adsorbent for detection and separation of those compounds.
similar resources
Hydroquinone detection by BN nanotube: DFT studies
Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward hydroquinone (C6H4(OH)2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level, and it was found that the adsorption energy (Ead) of hydroquinone on the pristine nanotube is a bout -7.77kcal/mol. But when nanotubes have been doped with Si and Al atomes, the adsorption energy of hy...
full textPyrrole detection by BeO nanotube: DFT studies
Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C4H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorptio...
full textMethyl acetylene detection by BN nanotube: DFT studies
Abstract: Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward (C3H4) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of methylacetylene (C3H4) the pristine nanotubes is a bout -1.78kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of me...
full textC4H6 Adsorption on the Surface of a BN Nanotube: DFT Studies
Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si and Al atoms, the adsorption energy of ethylacetylene molecu...
full textAdsorption of ethanol by using BN nanotube: a DFT study
Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward C2H5OH molecules by using density functional theory (DFT) calculations . It was founding that the adsorption energy(Ead) of ethanol on the pristine nanotubes is about -51.5 kJ / mol, but when the nanotube has been doped with Si and Al atoms , the adsorption and recovery time ch...
full textDFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes
DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...
full textMy Resources
Journal title
volume 36 issue 5
pages 89- 98
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023