Cyanogen, Methylacetylene, Hydroquinone, Ethylacetylene, Aniline, Pyrrole, and Ethanol Detection by Using BNNT: DFT Studies

Authors

  • Maziar Noei Department of Chemistry, College of Chemical Engineering , Mahshahr Branch, Islamic Azad University, Mahshahr, I.R. IRAN
  • Nazanin Molaei Department of Chemistry College of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, I.R. IRAN
  • Sahar Mohajeri Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, I.R. IRAN
Abstract:

Electrical sensitivity of a Boron Nitride Nano Tube (BNNT) was examined toward hydroquinone (C6H4(OH)2), cyanogens (C2N2), methylacetylene (C3H4), ethylacetylene (C4H6), aniline (C6H5NH2), ethanol (C2H5OH), pyrrole (C4H5N), molecules by using Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level of theory. In considering the dsorption energy (Ead) of those molecules on the BNNT are sequenced: C6H5NH2(Ead= -47.55kcal/mol)> C4H5N (Ead=-26.66kcal/mol) >C2H5OH(Ead= -25.91kcal/mol)> (CN)2(Ead=-20.70kcal/mol)> C6H4(OH)2(Ead= -20.21kcal/mol) >C3H4(Ead=-12.73kcal/mol)> C4H6(Ead=-11.19kcal/mol). According to this comparison aniline molecule with Ead=-47.55 kcal/mol has the most adsorption energy among all molecules. Calculations showed that when the nanotube was doped by Si and Al atoms, the amount of HOMO/LUMO energy gap (Eg) reduced significantly. This reduced showed that BNNT is a suitable semiconductor after doping and the doped BNNT in the presence of those gases generates an electrical signal and therefore can be used potentially for gas sensors. Recent researches demonstrate that Boron nitride nanotube is a suitable adsorbent for detection and separation of those compounds.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hydroquinone detection by BN nanotube: DFT studies

Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward hydroquinone (C6H4(OH)2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level, and it was found that the adsorption energy (Ead) of hydroquinone on the pristine nanotube is  a bout -7.77kcal/mol. But when nanotubes have been doped with Si and Al atomes, the adsorption energy of hy...

full text

Pyrrole detection by BeO nanotube: DFT studies

Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C4H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is   a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorptio...

full text

Methyl acetylene detection by BN nanotube: DFT studies

Abstract: Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward (C3H4) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of methylacetylene (C3H4) the pristine nanotubes is a bout -1.78kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of me...

full text

C4H6 Adsorption on the Surface of a BN Nanotube: DFT Studies

Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si and Al atoms, the adsorption energy of ethylacetylene molecu...

full text

Adsorption of ethanol by using BN nanotube: a DFT study

Electrical sensitivity of a boron nitride nanotube (BNNT)  was examined toward C2H5OH molecules by using density functional theory (DFT)  calculations . It was founding that the adsorption energy(Ead) of ethanol on the  pristine  nanotubes  is about -51.5 kJ / mol, but when  the nanotube has been doped  with Si and Al atoms , the adsorption  and recovery time ch...

full text

DFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes

DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 36  issue 5

pages  89- 98

publication date 2017-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023